
International Journal of Research in Advent Technology, Vol.3, No.1, January 2015
E-ISSN: 2321-9637

90

Design and Implementation of DDR SDRAM
Controller Based on FPGA in Satellite

Navigation System

1GOVINDU SIRISHA,2B. SUBHAKARARAO
1Dept of ECE, PG Scholar,2Dept of ECE, Associate Professor

1EMAIL:twinkling.glory@gmail.com 2Email: bsrmteches@gmail.com

Abstract: DDR SDRAM, with features of large capacity and high speed, has a good prospect in the acquisition of

satellite navigation system which requires large amounts of data accumulation. Due to the particularity of the

navigation signal processing algorithms, the time cannot be efficiently used during reading and writing in traditional

design of DDR SDRAM controller, reducing the efficiency of data processing. This paper presents a new strategy of

reading and writing and then implements a DDR SDRAM controller. Software simulation and hardware

experimental tests prove the correctness and feasibility of this design.

1. INTRODUCTION

In the satellite navigation system, how to

synchronize the local signal and received signal

quickly and accurately is a key issue. For the

requirements on both acquisition speed and

performance, multi-path and parallel processing

methods, coupled with the FFT or match filtering

acquisition algorithm are largely used, which require

the accumulation of large amounts of data[1]. For the

FPGA implementation, there is a necessity to expand

outside storage unit owing to the limitation of on-

chip memory capacity. The characteristics of high-

speed and large capacity make DDR SDRAM ideal

for the expansion memory.

Recently, a number of methods for DDR SDRAM

controller designing were introduced. An

implementation method for DDR controller in

satellite navigation receiver was proposed in [2], but

no specific strategy for reading and writing was

presented. The traditional way to read and write was

given in [3]. For the particularity of the navigation

signal processing algorithms, there will be a dead

time during reading and writing and the efficiency

will be largely reduced if using the traditional way.

This paper presents a new strategy for reading and

writing, which can significantly improve the speed and

efficiency, and then implements the high-speed data

processing between the FPGA and the off-chip memories,

2. PRINCIPLES OF DDR SDRAM AND DDR
SDRAM CONTROLLER

A. Basic Commands of DDR SDRAM

 Basic commands of DDR SDRAM are

combinations of CS_N, RAS_N,CAS_N and

WE_N. Tables 1 provides a quick reference of

available commands. All of the signals are acquired

at the rising edge of clock[4].

 TABLE I.Truth Table of DDR SDRAM Commands

COMMAND SIGN CS _ N RAS _ N CAS _ N WE _ N
No Operation NOP L H H H
Load Mode

Register MSR L L L L
Precharge PRE L L H L

Read READ L H L H
Write WRITE L H L L
Active ACT L L H H

Auto Refresh REF L L L H

International Journal of Research in Advent Technology, Vol.3, No.1, January 2015
E-ISSN: 2321-9637

91

B. DDR SDRAM Controller

DDR SDRAM controller controls the access to

memory in accordance with the timing rules, including

the control of the read/write control signals, address

signals, data signals , power-on initialization signals,

etc. We can simply the state machine of the controller as

shown in Fig. 1.

Prior to normal operation, DDR SDRAMs must be

powered up and initialized in a predefined manner.

When initial sequence completed, the design is

calibrated to ensure that correct data is captured in

the ISERDES primitives. When initialization and

calibration is done, the controller set the

phy_init_done signal HIGH and the memory is

IDLE, which is signaled to start normal operation of

the design. Now, the controller can start issuing user

write and read commands to the memory.

Figure 1. Simplified state machine of DDR SDRAM controller

In the design of controller, timing control of reading

and writing operations is completed according to the

state machine. Before issuing a READ or WRITE

command, we should active the row to be read or

written[5], as shown in Figure 1. Read and write

accesses to the DDR SDRAM are burst-oriented. The

burst length determines the maximum number of

column locations accessed for a given READ or WRITE

command , and the value can be programmable to either

2, 4, or 8. In this design, the burst length is set to be 8 to

guarantee the efficiency of read and write.

An AUTO REFRESH command is issued to the

DDR memory at specified intervals of time to refresh

the charge to retain the data. If the memory is reading or

writing when issuing an AUTO REFRESH command,

the controller will wait until the current operation

complete and then send a new command. If the user has

read/write request during the refresh process, the

controller will not respond to the requests until the

completion of the current refresh cycle[6].

3. DESIGN OF DDR SDRAM CONTROLLER
AND ITS READ AND WRITE STRATEGY OF

USER INTERFACE

The industry-standard DDR SDRAM memory has

complex and rigorous control logic and timing

requirements, and the DDR SDRAM controller provides a

relatively simple user interface. It transforms all operations

to the DDR SDRAM memory into operations to user-end

interface protocol. In order to shorten the design cycle, this

paper uses the Xilinx ISE 13.1 IP cores to implement the

DDR SDRAM controller.

In this design, DDR SDRAM is mainly used to

implement the storage of partial correlation results in the

time domain dimension in acquisition algorithm of

satellite navigation. Supposing the partial correlation

results are 4000*4096 matrix of n groups and the data

width is 16 bits. In order to improve the efficiency of data

processing, 6 chips of 16-bits-width DDR SDRAMs are

used in this design. To match the width, we should do

some data process like bit reshaping to the partial

correlation results before sending them to the DDR

SDRAM. With a certain amount of data written into the

memory, the controller will read out the results into the

chip to complete the computation of the FFT in the

frequency domain.

International Journal of Research in Advent Technology, Vol.3, No.1, January 2015
E-ISSN: 2321-9637

92

The partial correlation results after bit reshaping are

4000*1024 matrix of n groups, as shown in Fig. 2, and

are written into the DDR SDRAM in the sequence of

t(k) (k=1,2,3,...). The data are written in rows, and one

group of the data is written into one bank, which

occupies 4000 rows and 1024 columns. When read, it is

better to read in columns because of the FFT

computation in the frequency domain, so the traditional

method of reading in rows cannot be taken. But

changing rows in DDR SDRAM means a

PRECHARGE command to close the current row and

then an ACTIVE command to open the row for a

subsequent access. After completing these, the address

is accessible for the READ or WRITE command. Then

the read access delay for one data is (tRP + tRCD +

CL), which significantly reduces the efficiency of

reading and writing. Therefore, it is considered to read

several columns and then change to the next row. In

this design, 64 columns are read each time in a row. If

changing row needs 8 clocks, the read and write

efficiency is about 64/2 / [(64/2) +8] = 80%. So this

method can both meet the requirement of the project

and ensure the read and write efficiency of DDR

SDRAM.

 Figure 2. Input partial correlation results

In this design, we get 1024 partial correlation results to

be stored every 2048 clocks. If we use traditional ways of

reading and writing, that is, to read out the data of a BANK

which is continuously written in previously, it would

require a large amount of on-chip RAMs to save them for

FFT computation and make the time pressing for the

following data processing. In addition, it only takes 512

clocks to write the 1024 data to DDR SDRAM (without

considering the refresh time), so the remaining 1536 clocks

become the unavailable dead time, which reduces the speed

of data processing. Given this, this paper adopts the method

of reading and writing alternatively, similar to the ping-

pong storage strategy in FPGA implementation[7]. After

writing 1024 data to the DDR SDRAM, we read 16*64

data in the last BANK each time, which takes about

[(64/2)+8]*16 = 640 clocks. Using this method, we realize

the seamlessly reading and writing. In addition, the user

data FIFO will not overflow because of the total time for

reading and writing being less than 2048 clocks, and no

read and write conflicts will happen on account of the same

time taking for reading and writing each BANK.

In summary, the steps of the new strategy can be

described as follows:

step 1: Write the first group of partial correlation

results after bit reshaping to the DDR SDRAM in

rows(4000 rows in total).Now the BANK address is

0;

step 2: Set the BANK address to 1,then write in

the first row of the second group;

step 3: Set the BANK address to 0,then read out

16*64 data of the first group;

step 4: Repeat step2 and step 3 until finishing

writing the second group of data;

step 5: Deduce the rest by analogy to complete

reading and writing process of n groups.

4. FPGA IMPLEMENTATION OF DDR SDRAM
CONTROLLER

This system uses Xilinx's Virtex_5 FPGA and

MICRON MT46V32M16XX-5B DDR SDRAM. The

density of the memory chip is 512Mb and the Data

Width is 16 bits. We need 6 memory chips in this design

as mentioned above.

International Journal of Research in Advent Technology, Vol.3, No.1, January 2015
E-ISSN: 2321-9637

93

MIG 3.6 (Memory Interface Generator) in Xilinx

ISE 13.1 CORE Generator design tool can generate

DDR SDRAM controller based on V5 FPGA. The

implementation of DDR SDRAM controller contains

four modules: the controller module, the user interface

module, the infrastructure module and the delay

calibration module[8]. The logic block diagram is

shown in Fig. 3.

Figure 3. Logic block diagram of DDR SDRAM
controller Implementation

A.DDR SDRAM Controller User Interface
 Module

The user interface module generates the interface to let the
user access to the DDR SDRAM through data buses,
address buses and control signals. Fig. 4 shows the logic
block diagram of this module.

In Figure 4, the write address generation unit and the read
address generation unit generate the write data address
app_wr_addr and read data address app_rd_addr
respectively and send them to the read/write control unit.
The read/write control unit is controlled by a state
machine. According to the strategy described in 2.2,
coupled with three status signals (wdf_almost_full,
af_almost_full and phy_Init_done) getting from the DDR
SDRAM, the control unit generates enable signals, address
signals and status signals, such as app_af_wren,
app_wdf_wren, app_af_addr, etc.

Figure 4. Logic block diagram of user interface module

B.DDR SDRAM Controller Module

The controller module initialize the DDR memory, parse

the issued commands from the user, and generates all

the control signals required for the memory and the user

interface. This module is mainly designed by MIG.

C. INFRASTRUCTURE MODULE

The infrastructure module generates the FPGA clock

and reset signals. In this design, we use differential

clocking (sys_clk_p and sys_clk_n). Differential clocks

are passed through global clock buffers before

connecting to a PLL, and the output of the

sys_clk_p/sys_clk_n buffer is single-ended and is

provided to the PLL input. The PLL unit generates

phase-shifted clocks like clk0 and clk90. In addition, the

calibration clock(clk200) and all the reset signals are

generated in this module.

D. Delay Calibration Module

This module instantiates the IDELAYCTRL primitive

of the Virtex-5 FPGA. The IDELAYCTRL primitive is

used to continuously calibrate the individual delay

elements in its region to reduce the effect of process,

temperature, and voltage variations. A 200 MHz clock has to

be fed to this primitive.

International Journal of Research in Advent Technology, Vol.3, No.1, January 2015
E-ISSN: 2321-9637

94

5. FUNCTIONAL SIMULATION AND
HARDWARE DEBUGGING

A. Functional Simulation and Analysis

This paper conducts functional simulation to the

aforementioned algorithm in ModelSim 10.1 to ensure

the correctness of the logic function and timing control.

Fig. 5 and Fig. 6 show the simulation waveforms of

writing and reading respectively. Fig.7 shows the

waveform of reading and writing alternatively. The

simulation results indicate that both the DDR SDRAM

and its control logic work properly.

Figure 5. Simulation waveform of writing data to the
DDR SDRAM

Figure 6. Simulation waveform of reading data from the

DDR SDRAM

Figure 7. Simulation waveform of reading and
writing alternatively

B. Hardware Debugging

The Chipscope analyzer is an integrated logic analysis

software of ISE, and we can observe the internal signal

waveforms of FPGA logic design through it. With the

logic design and functional simulation completed, we

add the CDC file to the project ,which includes the

signals to be observed and some trigger signals. Upon

implementing this design, a BIT file is generated that

can be programmed using the ChipScope analyzer, then

we can do real-time acquisition to the signals added in

CDC file.

Waveform of reading and writing alternatively acquired

by CDC is shown in Fig. 8. Hardware debugging

verifies that all the 6 memory chips can work in normal

under the differential clocking and the designed

controller can write and read data correctly. Thus we

realize the high-speed reading and writing of the partial

correlation results between FPGA and the off-chip

memories.

International Journal of Research in Advent Technology, Vol.3, No.1, January 2015
E-ISSN: 2321-9637

95

Figure 8. Waveform of reading and writing alternatively

acquired by CDC

6. CONCLUSION

Because of the complex and rigorous control logic and

timing requirements of DDR SDRAM, it requires very

detailed work for correct implementation. Based on an in-

depth understanding of the basic principles of DDR

SDRAM and algorithms of satellite navigation system, this

paper presents a new strategy for reading and writing and

then implements the DDR SDRAM controller based on

FPGA. Compared to the traditional methods, the new

strategy can realize the seamlessly reading and writing and

improve the efficiency of data processing in navigation

system. Functional simulation and hardware debugging

prove the feasibility of the design.

REFERENCES
[1] Kaplan E D, "Understanding GPS Principles and

Applications[M]". Boston, ArtechHouse ,
Inc,1996.

[2] Li Xi ̅liang, Chang Qing and Zhang Qi-shan,
DDR Controller Realized with FPGA in Satellite
Navigation Receiver [J]. Radio Engineering of
China, 2008, 38(2), pp. 51–54.

[3] Huang Yin, "Design and application of high-
speed data storage system[D]",Huazhong
University of Science and Technology,2009.

[4] Micron Technology, Inc. Micron DDR SDRAM
512Mb DDR x4 x8 x16 Features. 2006.

[5] Picatoste-Olloqui E., Cardells-Tormo F. and
Sempere-Agullo J., et al, Implementinghigh-
speed double-data rate (DDR) SDRAM
controllers on FPGA[C]. Berlin,Germany:
Springer-Verlag, 2004..

[6] Ma ling, Yang Jun-feng, Song ke-zhu and Wang
Yan-fang, A design of multiple DDR SDRAM
controllers based on FPGA in a seismic data
acquisition system[J]. Jounal of university of
science and technology of China, 2010, 40(9),
pp. 939–945.

[7] Wang Zhi, Luo Xin-min, Design and
implementation of asynchronous FIFO based on
ping-pong operation[J], Electronic engineer,
2005, 31(6),pp.13–16.

[8] Xilinx Inc. Memory Interface Solutions User
Guide 13UG086 (v3.6). September 21, 2010.

